23 research outputs found

    StÀrkung der WettbewerbsfÀhigkeit der ökologischen Ferkelerzeugung in Bayern - ein interdisziplinÀres Projekt

    Get PDF
    Die WettbewerbsfĂ€higkeit der fĂŒr SĂŒddeutschland typischen, bĂ€uerlichen Ferkelerzeugung ist im ökologischen Landbau bisher gering. Dadurch besteht ein Umstellungshemmnis, das die weitere Entwicklung der Schweinhaltung im Ökolandbau behindert. Das vorgestellte interdisziplinĂ€re Projekt soll mithilfe einer engen Zusammenarbeit von Forschung, Beratung und Praxis einen wesentlichen Beitrag zur Verbesserung der Produktionsbedingungen liefern. Ziel ist es, Grundlagen fĂŒr eine Erhöhung von Leistung und Wertschöpfung in der ökologischen Ferkelerzeugung zu erarbeiten. Dies geschieht durch eine Verbesserung des Stands des Wissens ĂŒber geeignete Haltungsverfahren, Stallbaulösungen, Arbeitsorganisation, ProzessqualitĂ€t und Betriebswirtschaft. An dem Projekt sind sieben Arbeitsgruppen und elf Praxisbetriebe beteiligt. Das Projekt startete im Juli 2008 und wird voraussichtlich Ende 2010 abgeschlossen werden

    Interface Molecular engineering for laminated monolithic perovskite/silicon tandem solar cells with 80.4% fill factor

    Get PDF
    A multipurpose interconnection layer based on poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS), and d‐sorbitol for monolithic perovskite/silicon tandem solar cells is introduced. The interconnection of independently processed silicon and perovskite subcells is a simple add‐on lamination step, alleviating common fabrication complexities of tandem devices. It is demonstrated experimentally and theoretically that PEDOT:PSS is an ideal building block for manipulating the mechanical and electrical functionality of the charge recombination layer by controlling the microstructure on the nano‐ and mesoscale. It is elucidated that the optimal functionality of the recombination layer relies on a gradient in the d‐sorbitol dopant distribution that modulates the orientation of PEDOT across the PEDOT:PSS film. Using this modified PEDOT:PSS composite, a monolithic two‐terminal perovskite/silicon tandem solar cell with a steady‐state efficiency of 21.0%, a fill factor of 80.4%, and negligible open circuit voltage losses compared to single‐junction devices is shown. The versatility of this approach is further validated by presenting a laminated two‐terminal monolithic perovskite/organic tandem solar cell with 11.7% power conversion efficiency. It is envisioned that this lamination concept can be applied for the pairing of multiple photovoltaic and other thin film technologies, creating a universal platform that facilitates mass production of tandem devices with high efficiency

    Controlled Growth of Gold Nanoparticles on Covellite Copper Sulfide Nanoplatelets for the Formation of Plate–Satellite Hybrid Structures

    No full text
    We present a novel, straightforward, and reproducible method to form tailored CuS@Au hybrid structures consisting of two-dimensional copper sulfide nanoplatelets and gold nanoparticles that are formed exclusively on the sides of the two-dimensional nanoplatelets. For the realization of these dual-plasmonic structures, covellite copper sulfide nanoplatelets are first prepared via a wet-chemical route. In the second step, these platelets react with tetrachloroauric(III) acid trihydrate, oleylamine, and oxalic acid dihydrate at room temperature under a nitrogen atmosphere and in the absence of light. By varying the amount of added gold(III) ions, not only the number and size but also the interparticle distance between the gold nanoparticles along the sides of the copper sulfide nanoplatelets can be tailored, which can influence the optical properties of the hybrid structures. A combination of scanning transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy on the hybrid structures prepared at different reaction times allows for a detailed understanding of the underlying selective gold growth on the CuS nanoplatelets and also provides insights into the metal–semiconductor interface

    Colloidal Manganese-Doped ZnS Nanoplatelets and Their Optical Properties

    No full text
    Manganese (Mn)-doped ZnS nanocrystals (NCs) have been extensively explored for optical applications with the advantages of low toxicity, large Stokes shifts, and enhanced thermal and environmental stability. Although numerous studies on Mn-doped ZnS dots, rods, and wires have been reported, the literature related to Mn-doped ZnS nanoplatelets (ZnS:Mn NPLs) is scarce. Here, we present the first example of direct doping of Mn2+ ions into ZnS NPLs via the nucleation-doping strategy. The resulting ZnS:Mn NPLs exhibit Mn luminescence, indicative for successful doping of the host ZnS NPLs with Mn2+ ions. The energy transfer from the ZnS NPLs to the Mn2+ ions was observed by employing spectroscopic methods. Furthermore, the impact of the Mn concentration on the optical properties of ZnS:Mn NPLs was systematically investigated. As a result of Mn–Mn interaction, tunable Mn emission and shortened photoluminescence (PL) lifetime decay were observed and rationalized by means of electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS). Finally, we show that the initially low dopant PL quantum yield (QY) of ZnS:Mn NPLs can be dramatically enhanced by passivating the surface trap states of the samples. The presented synthetic strategy of ZnS:Mn NPLs opens a new way to synthesize further doped systems of two-dimensional (2D) NPLs
    corecore